Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 332
1.
Nat Neurosci ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649755

Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas and BrainSpan), we found that C1-C3 represent generalizable transcriptional programs that are coordinated within cells and differentially phased during fetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, differential expression and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional program for adolescent brain development, which can lead to atypical supragranular cortical connectivity in people at high genetic risk for schizophrenia.

2.
Proc Natl Acad Sci U S A ; 121(16): e2304704121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593073

Childhood maltreatment (CM) leads to a lifelong susceptibility to mental ill-health which might be reflected by its effects on adult brain structure, perhaps indirectly mediated by its effects on adult metabolic, immune, and psychosocial systems. Indexing these systemic factors via body mass index (BMI), C-reactive protein (CRP), and rates of adult trauma (AT), respectively, we tested three hypotheses: (H1) CM has direct or indirect effects on adult trauma, BMI, and CRP; (H2) adult trauma, BMI, and CRP are all independently related to adult brain structure; and (H3) childhood maltreatment has indirect effects on adult brain structure mediated in parallel by BMI, CRP, and AT. Using path analysis and data from N = 116,887 participants in UK Biobank, we find that CM is related to greater BMI and AT levels, and that these two variables mediate CM's effects on CRP [H1]. Regression analyses on the UKB MRI subsample (N = 21,738) revealed that greater CRP and BMI were both independently related to a spatially convergent pattern of cortical effects (Spearman's ρ = 0.87) characterized by fronto-occipital increases and temporo-parietal reductions in thickness. Subcortically, BMI was associated with greater volume, AT with lower volume and CPR with effects in both directions [H2]. Finally, path models indicated that CM has indirect effects in a subset of brain regions mediated through its direct effects on BMI and AT and indirect effects on CRP [H3]. Results provide evidence that childhood maltreatment can influence brain structure decades after exposure by increasing individual risk toward adult trauma, obesity, and inflammation.


Brain , Child Abuse , Adult , Humans , Child , Brain/diagnostic imaging , Brain/metabolism , C-Reactive Protein/metabolism , Inflammation/metabolism , Obesity/complications , Child Abuse/psychology
3.
Article En | MEDLINE | ID: mdl-38679324

BACKGROUND: Patients with major depressive disorder (MDD) can present with altered brain structure and deficits in cognitive function similar to aging. Yet, the interaction between age-related brain changes and brain development in MDD remains understudied. In a cohort of adolescents and adults with and without MDD, we assessed brain aging differences and associations through a newly developed tool quantifying normative neurodevelopmental trajectories. METHODS: 304 MDD participants and 236 non-depressed controls were recruited and scanned from three studies under the Canadian Biomarker Integration Network for Depression. Volumetric data were used to generate brain centile scores, which were examined for: a) differences in MDD relative to controls; b) differences in individuals with versus without severe childhood maltreatment; and c) correlations with depressive symptom severity, neurocognitive assessment domains, or escitalopram treatment response. RESULTS: Brain centiles were significantly lower in the MDD group compared to controls. It was also significantly correlated with working memory in controls, but not the MDD group. No significant associations were observed in depression severity or antidepressant treatment response with brain centiles. Likewise, childhood maltreatment history did not significantly affect brain centiles. CONCLUSIONS: Consistent with prior work on machine learning models that predict "brain age", brain centile scores differed in people diagnosed with MDD, and MDD was associated with differential relationships between centile scores and working memory. The results support the notion of atypical development and aging in MDD, with implications on neurocognitive deficits associated with aging-related cognitive function.

4.
J Affect Disord ; 356: 167-176, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38494137

Sex hormones have biological effects on inflammation, and these might contribute to the sex-specific features of depression. C-reactive protein (CRP) is the most widely used inflammatory biomarker and consistent evidence shows a significant proportion (20-30 %) of patients with major depressive disorder (MDD) have CRP levels above 3 mg/L, a threshold indicating at least low-grade inflammation. Here, we investigate the interplay between sex hormones and CRP in the cross-sectional, observational Biomarkers in Depression Study. We measured serum high-sensitivity (hs-)CRP, in 64 healthy controls and 178 MDD patients, subdivided into those with hs-CRP below 3 mg/L (low-CRP; 53 males, 72 females) and with hs-CRP above 3 mg/L (high-CRP; 19 males, 34 females). We also measured interleukin-6, testosterone, 17-ß-estradiol (E2), progesterone, sex-hormone binding globulin (SHBG), follicle-stimulating and luteinising hormones, and calculated testosterone-to-E2 ratio (T/E2), free androgen and estradiol indexes (FAI, FEI), and testosterone secretion index. In males, high-CRP patients had lower testosterone than controls (p = 0.001), and lower testosterone (p = 0.013), T/E2 (p < 0.001), and higher FEI (p = 0.015) than low-CRP patients. In females, high-CRP patients showed lower SHGB levels than controls (p = 0.033) and low-CRP patients (p = 0.034). The differences in testosterone, T/E2 ratio, and FEI levels in males survived the Benjamini-Hochberg FDR correction. In linear regression analyses, testosterone (ß = -1.069 p = 0.033) predicted CRP concentrations (R2 = 0.252 p = 0.002) in male patients, and SHBG predicted CRP levels (ß = -0.628 p = 0.009, R2 = 0.172 p = 0.003) in female patients. These findings may guide future research investigating interactions between gonadal and immune systems in depression, and the potential of hormonal therapies in MDD with inflammation.


C-Reactive Protein , Depressive Disorder, Major , Estradiol , Inflammation , Interleukin-6 , Progesterone , Sex Hormone-Binding Globulin , Testosterone , Humans , Depressive Disorder, Major/blood , Male , Female , C-Reactive Protein/analysis , Adult , Cross-Sectional Studies , Testosterone/blood , Middle Aged , Inflammation/blood , Sex Hormone-Binding Globulin/analysis , Estradiol/blood , Progesterone/blood , Interleukin-6/blood , Biomarkers/blood , Gonadal Steroid Hormones/blood , Sex Factors , Follicle Stimulating Hormone/blood , Luteinizing Hormone/blood
5.
medRxiv ; 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38106166

Background: Autism and attention deficit hyperactivity disorder (ADHD) are heterogeneous neurodevelopmental conditions with complex underlying neurobiology. Despite overlapping presentation and sex-biased prevalence, autism and ADHD are rarely studied together, and sex differences are often overlooked. Normative modelling provides a unified framework for studying age-specific and sex-specific divergences in neurodivergent brain development. Methods: Here we use normative modelling and a large, multi-site neuroimaging dataset to characterise cortical anatomy associated with autism and ADHD, benchmarked against models of typical brain development based on a sample of over 75,000 individuals. We also examined sex and age differences, relationship with autistic traits, and explored the co-occurrence of autism and ADHD (autism+ADHD). Results: We observed robust neuroanatomical signatures of both autism and ADHD. Overall, autistic individuals showed greater cortical thickness and volume localised to the superior temporal cortex, whereas individuals with ADHD showed more global effects of cortical thickness increases but lower cortical volume and surface area across much of the cortex. The autism+ADHD group displayed a unique pattern of widespread increases in cortical thickness, and certain decreases in surface area. We also found evidence that sex modulates the neuroanatomy of autism but not ADHD, and an age-by-diagnosis interaction for ADHD only. Conclusions: These results indicate distinct cortical differences in autism and ADHD that are differentially impacted by age, sex, and potentially unique patterns related to their co-occurrence.

6.
Nat Commun ; 14(1): 7820, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38016951

Genetic risks for schizophrenia are theoretically mediated by genetic effects on brain structure but it has been unclear which genes are associated with both schizophrenia and cortical phenotypes. We accessed genome-wide association studies (GWAS) of schizophrenia (N = 69,369 cases; 236,642 controls), and of three magnetic resonance imaging (MRI) metrics (surface area, cortical thickness, neurite density index) measured at 180 cortical areas (N = 36,843, UK Biobank). Using Hi-C-coupled MAGMA, 61 genes were significantly associated with both schizophrenia and one or more MRI metrics. Whole genome analysis with partial least squares demonstrated significant genetic covariation between schizophrenia and area or thickness of most cortical regions. Genetic similarity between cortical areas was strongly coupled to their phenotypic covariance, and genetic covariation between schizophrenia and brain phenotypes was strongest in the hubs of structural covariance networks. Pleiotropically associated genes were enriched for neurodevelopmental processes and positionally concentrated in chromosomes 3p21, 17q21 and 11p11. Mendelian randomization analysis indicated that genetically determined variation in a posterior cingulate cortical area could be causal for schizophrenia. Parallel analyses of GWAS on bipolar disorder, Alzheimer's disease and height showed that pleiotropic association with MRI metrics was stronger for schizophrenia compared to other disorders.


Bipolar Disorder , Schizophrenia , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Brain/diagnostic imaging , Brain/pathology , Genome-Wide Association Study/methods , Magnetic Resonance Imaging , Phenotype , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Mendelian Randomization Analysis
7.
Elife ; 122023 Oct 20.
Article En | MEDLINE | ID: mdl-37861301

The relationship between obesity and human brain structure is incompletely understood. Using diffusion-weighted MRI from ∼30,000 UK Biobank participants, we test the hypothesis that obesity (waist-to-hip ratio, WHR) is associated with regional differences in two micro-structural MRI metrics: isotropic volume fraction (ISOVF), an index of free water, and intra-cellular volume fraction (ICVF), an index of neurite density. We observed significant associations with obesity in two coupled but distinct brain systems: a prefrontal/temporal/striatal system associated with ISOVF and a medial temporal/occipital/striatal system associated with ICVF. The ISOVF~WHR system colocated with expression of genes enriched for innate immune functions, decreased glial density, and high mu opioid (MOR) and other neurotransmitter receptor density. Conversely, the ICVF~WHR system co-located with expression of genes enriched for G-protein coupled receptors and decreased density of MOR and other receptors. To test whether these distinct brain phenotypes might differ in terms of their underlying shared genetics or relationship to maps of the inflammatory marker C-reactive Protein (CRP), we estimated the genetic correlations between WHR and ISOVF (rg = 0.026, P = 0.36) and ICVF (rg = 0.112, P < 9×10-4) as well as comparing correlations between WHR maps and equivalent CRP maps for ISOVF and ICVF (P<0.05). These correlational results are consistent with a two-way mechanistic model whereby genetically determined differences in neurite density in the medial temporal system may contribute to obesity, whereas water content in the prefrontal system could reflect a consequence of obesity mediated by innate immune system activation.


People with obesity are at greater risk of cardiovascular diseases and metabolic conditions such as type 2 diabetes. More recently obesity has also been linked to changes in the brain that are associated with age-related dementia and cognitive decline. This includes a thinner cortex (the brain's outer layer) and lower volume of grey matter which is where cognitive processes, such as learning, take place. However, questions remain about how obesity and grey matter are connected. For instance, it is unclear whether the change in volume is due to there being fewer cells (and thus more water between them) or fewer connections between cells in these brain areas. It is also unknown whether the reduced volume of grey matter is a cause or consequence of obesity. To address these questions, Kitzbichler et al. analysed 30,000 MRI scans of the human brain which are stored in the UK Biobank. This revealed two characteristics in grey matter that were linked to obesity: higher amounts of water between cells in some areas, and a lower density of connections between neurons in others. The areas with higher levels of free water are known to have more glial cells which provide support to neurons. They also have more receptors that bind to fatty acids (which are often raised in people with obesity) and more receptors for molecules and cells involved in the immune response. In contrast, the areas with a lower density of connections between neurons usually were more closely associated with genetic risk factors associated with obesity, and fewer receptors involved in feeding, appetite and energy use. The findings of Kitzblicher et al. suggest that differences in the density of connections between neurons may contribute to obesity. High water content in grey matter, on the other hand, may be a consequence of obesity that occurs as a result of immune receptors becoming activated. This provides new insights in to how obesity and grey matter in the brain are connected.


Brain , Obesity , Humans , Brain/diagnostic imaging , Obesity/genetics , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging/methods , Water
8.
bioRxiv ; 2023 Aug 29.
Article En | MEDLINE | ID: mdl-37693556

Autism presents with significant phenotypic and neuroanatomical heterogeneity, and neuroimaging studies of the thalamus, globus pallidus and striatum in autism have produced inconsistent and contradictory results. These structures are critical mediators of functions known to be atypical in autism, including sensory gating and motor function. We examined both volumetric and fine-grained localized shape differences in autism using a large (n=3145, 1045-1318 after strict quality control), cross-sectional dataset of T1-weighted structural MRI scans from 32 sites, including both males and females (assigned-at-birth). We investigated three potentially important sources of neuroanatomical heterogeneity: sex, age, and intelligence quotient (IQ), using a meta-analytic technique after strict quality control to minimize non-biological sources of variation. We observed no volumetric differences in the thalamus, globus pallidus, or striatum in autism. Rather, we identified a variety of localized shape differences in all three structures. Including age, but not sex or IQ, in the statistical model improved the fit for both the pallidum and striatum, but not for the thalamus. Age-centered shape analysis indicated a variety of age-dependent regional differences. Overall, our findings help confirm that the neurodevelopment of the striatum, globus pallidus and thalamus are atypical in autism, in a subtle location-dependent manner that is not reflected in overall structure volumes, and that is highly non-uniform across the lifespan.

9.
Nat Genet ; 55(9): 1483-1493, 2023 09.
Article En | MEDLINE | ID: mdl-37592024

Our understanding of the genetics of the human cerebral cortex is limited both in terms of the diversity and the anatomical granularity of brain structural phenotypes. Here we conducted a genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging-derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,663 individuals and identified 4,349 experiment-wide significant loci. These phenotypes include cortical thickness, surface area, gray matter volume, measures of folding, neurite density and water diffusion. We identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with cortical expansion are associated with cephalic disorders. Finally, we identified complex interphenotype and inter-regional genetic relationships among the 13 phenotypes, reflecting the developmental differences among them. Together, these analyses identify distinct genetic organizational principles of the cortex and their correlates with neurodevelopment.


Cerebral Cortex , Genome-Wide Association Study , Humans , Cerebral Cortex/diagnostic imaging , Brain/diagnostic imaging , Neuroimaging , Phenotype
10.
Dev Psychopathol ; 35(5): 2253-2263, 2023 Dec.
Article En | MEDLINE | ID: mdl-37493043

Childhood adversity is one of the strongest predictors of adolescent mental illness. Therefore, it is critical that the mechanisms that aid resilient functioning in individuals exposed to childhood adversity are better understood. Here, we examined whether resilient functioning was related to structural brain network topology. We quantified resilient functioning at the individual level as psychosocial functioning adjusted for the severity of childhood adversity in a large sample of adolescents (N = 2406, aged 14-24). Next, we examined nodal degree (the number of connections that brain regions have in a network) using brain-wide cortical thickness measures in a representative subset (N = 275) using a sliding window approach. We found that higher resilient functioning was associated with lower nodal degree of multiple regions including the dorsolateral prefrontal cortex, the medial prefrontal cortex, and the posterior superior temporal sulcus (z > 1.645). During adolescence, decreases in nodal degree are thought to reflect a normative developmental process that is part of the extensive remodeling of structural brain network topology. Prior findings in this sample showed that decreased nodal degree was associated with age, as such our findings of negative associations between nodal degree and resilient functioning may therefore potentially resemble a more mature structural network configuration in individuals with higher resilient functioning.


Adverse Childhood Experiences , Mental Disorders , Resilience, Psychological , Humans , Adolescent , Brain/diagnostic imaging , Temporal Lobe , Magnetic Resonance Imaging
11.
Nat Neurosci ; 26(8): 1461-1471, 2023 08.
Article En | MEDLINE | ID: mdl-37460809

Structural similarity is a growing focus for magnetic resonance imaging (MRI) of connectomes. Here we propose Morphometric INverse Divergence (MIND), a new method to estimate within-subject similarity between cortical areas based on the divergence between their multivariate distributions of multiple MRI features. Compared to the prior approach of morphometric similarity networks (MSNs) on n > 11,000 scans spanning three human datasets and one macaque dataset, MIND networks were more reliable, more consistent with cortical cytoarchitectonics and symmetry and more correlated with tract-tracing measures of axonal connectivity. MIND networks derived from human T1-weighted MRI were more sensitive to age-related changes than MSNs or networks derived by tractography of diffusion-weighted MRI. Gene co-expression between cortical areas was more strongly coupled to MIND networks than to MSNs or tractography. MIND network phenotypes were also more heritable, especially edges between structurally differentiated areas. MIND network analysis provides a biologically validated lens for cortical connectomics using readily available MRI data.


Connectome , Magnetic Resonance Imaging , Animals , Humans , Brain , Diffusion Magnetic Resonance Imaging , Connectome/methods , Macaca
13.
Transl Psychiatry ; 13(1): 185, 2023 06 01.
Article En | MEDLINE | ID: mdl-37264010

Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone. Analysing mRNA gene expression levels, we aimed to identify broader molecular immune-related phenotypes of MDD. We examined 168 individuals from the non-interventional, case-control, BIODEP study, 128 with a diagnosis of MDD and 40 healthy controls. Individuals with MDD were further divided according to serum high-sensitivity (hs)CRP levels (n = 59 with CRP <1, n = 33 with CRP 1-3 and n = 36 with CRP >3 mg/L). We isolated RNA from whole blood and performed gene expression analyses using RT-qPCR. We measured the expression of 16 immune-related candidate genes: A2M, AQP4, CCL2, CXCL12, CRP, FKBP5, IL-1-beta, IL-6, ISG15, MIF, GR, P2RX7, SGK1, STAT1, TNF-alpha and USP18. Nine of the 16 candidate genes were differentially expressed in MDD cases vs. controls, with no differences between CRP-based groups. Only CRP mRNA was clearly associated with serum CRP. In contrast, plasma (proteins) IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-16, IL-17A, IFN-gamma and TNF-alpha, and neutrophils counts, were all differentially regulated between CRP-based groups (higher in CRP >3 vs. CRP <1 and/or controls), reflecting the gradient of CRP values. Secondary analyses on MDD individuals and controls with CRP values <1 mg/L (usually interpreted as 'no inflammation') confirmed MDD cases still had significantly different mRNA expression of immune-related genes compared with controls. These findings corroborate an immune-related molecular activation in MDD, which appears to be independent of serum CRP levels. Additional biological mechanisms may then be required to translate this mRNA signature into inflammation at protein and cellular levels. Understanding these mechanisms will help to uncover the true immune abnormalities in depression, opening new paths for diagnosis and treatment.


Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Tumor Necrosis Factor-alpha , Depression , Interleukin-6 , C-Reactive Protein/analysis , Inflammation/genetics , Inflammation/complications , RNA, Messenger/genetics , Gene Expression , Ubiquitin Thiolesterase/genetics
14.
Nat Neurosci ; 26(5): 867-878, 2023 05.
Article En | MEDLINE | ID: mdl-37095399

High-throughput experimental methods in neuroscience have led to an explosion of techniques for measuring complex interactions and multi-dimensional patterns. However, whether sophisticated measures of emergent phenomena can be traced back to simpler, low-dimensional statistics is largely unknown. To explore this question, we examined resting-state functional magnetic resonance imaging (rs-fMRI) data using complex topology measures from network neuroscience. Here we show that spatial and temporal autocorrelation are reliable statistics that explain numerous measures of network topology. Surrogate time series with subject-matched spatial and temporal autocorrelation capture nearly all reliable individual and regional variation in these topology measures. Network topology changes during aging are driven by spatial autocorrelation, and multiple serotonergic drugs causally induce the same topographic change in temporal autocorrelation. This reductionistic interpretation of widely used complexity measures may help link them to neurobiology.


Brain Mapping , Magnetic Resonance Imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Time Factors
15.
Transl Psychiatry ; 13(1): 81, 2023 03 07.
Article En | MEDLINE | ID: mdl-36882404

Early-life stress (ELS) or adversity, particularly in the form of childhood neglect and abuse, is associated with poor mental and physical health outcomes in adulthood. However, whether these relationships are mediated by the consequences of ELS itself or by other exposures that frequently co-occur with ELS is unclear. To address this question, we carried out a longitudinal study in rats to isolate the effects of ELS on regional brain volumes and behavioral phenotypes relevant to anxiety and depression. We used the repeated maternal separation (RMS) model of chronic ELS, and conducted behavioral measurements throughout adulthood, including of probabilistic reversal learning (PRL), responding on a progressive ratio task, sucrose preference, novelty preference, novelty reactivity, and putative anxiety-like behavior on the elevated plus maze. Our behavioral assessment was combined with magnetic resonance imaging (MRI) for quantitation of regional brain volumes at three time points: immediately following RMS, young adulthood without further stress, and late adulthood with further stress. We found that RMS caused long-lasting, sexually dimorphic biased responding to negative feedback on the PRL task. RMS also slowed response time on the PRL task, but without this directly impacting task performance. RMS animals were also uniquely sensitive to a second stressor, which disproportionately impaired their performance and slowed their responding on the PRL task. MRI at the time of the adult stress revealed a larger amygdala volume in RMS animals compared with controls. These behavioral and neurobiological effects persisted well into adulthood despite a lack of effects on conventional tests of 'depression-like' and 'anxiety-like' behavior, and a lack of any evidence of anhedonia. Our findings indicate that ELS has long-lasting cognitive and neurobehavioral effects that interact with stress in adulthood and may have relevance for understanding the etiology of anxiety and depression in humans.


Adverse Childhood Experiences , Adult , Humans , Animals , Rats , Young Adult , Feedback , Longitudinal Studies , Maternal Deprivation , Stress, Psychological/diagnostic imaging , Amygdala/diagnostic imaging , Bias
17.
Neurobiol Stress ; 22: 100507, 2023 Jan.
Article En | MEDLINE | ID: mdl-36505960

Major depressive disorder (MDD) is a stress-related condition hypothesized to involve aberrant reinforcement learning (RL) with positive and negative stimuli. The present study investigated whether repeated early maternal separation (REMS) stress, a procedure widely recognized to cause depression-like behaviour, affects how subjects learn from positive and negative feedback. The REMS procedure was implemented by separating male and female rats from their dam for 6 h each day from post-natal day 5-19. Control rat offspring were left undisturbed during this period. Rats were tested as adults for behavioral flexibility and feedback sensitivity on a probabilistic reversal learning task. A computational approach based on RL theory was used to derive latent behavioral variables related to reward learning and flexibility. To assess underlying brain substrates, a seed-based functional MRI connectivity analysis was applied both before and after an additional adulthood stressor in control and REMS rats. Female but not male rats exposed to REMS stress showed increased response 'stickiness' (repeated responses regardless of reward outcome). Following repeated adulthood stress, reduced functional connectivity from the basolateral amygdala (BLA) to the dorsolateral striatum (DLS), cingulate cortex (Cg), and anterior insula (AI) cortex was observed in females. By contrast, control male rats exposed to the second stressor showed impaired learning from negative feedback (i.e., non-reward) and reduced functional connectivity from the BLA to the DLS and AI compared to maternally separated males. RL in male rats exposed to REMS was unaffected. The fMRI data further revealed that connectivity between the mOFC and other prefrontal cortical and subcortical structures was positively correlated with response 'stickiness'. These findings reveal differences in how females and males respond to early life adversity and subsequent stress. These effects may be mediated by functional divergence in resting-state connectivity between the basolateral amygdala and fronto-striatal brain regions.

18.
Eur Child Adolesc Psychiatry ; 32(5): 797-807, 2023 May.
Article En | MEDLINE | ID: mdl-34792650

Characterizing patterns of mental phenomena in epidemiological studies of adolescents can provide insight into the latent organization of psychiatric disorders. This avoids the biases of chronicity and selection inherent in clinical samples, guides models of shared aetiology within psychiatric disorders and informs the development and implementation of interventions. We applied Gaussian mixture modelling to measures of mental phenomena from two general population cohorts: the Avon Longitudinal Study of Parents and Children (ALSPAC, n = 3018) and the Neuroscience in Psychiatry Network (NSPN, n = 2023). We defined classes according to their patterns of both positive (e.g. wellbeing and self-esteem) and negative (e.g. depression, anxiety, and psychotic experiences) phenomena. Subsequently, we characterized classes by considering the distribution of diagnoses and sex split across classes. Four well-separated classes were identified within each cohort. Classes primarily differed by overall severity of transdiagnostic distress rather than particular patterns of phenomena akin to diagnoses. Further, as overall severity of distress increased, so did within-class variability, the proportion of individuals with operational psychiatric diagnoses. These results suggest that classes of mental phenomena in the general population of adolescents may not be the same as those found in clinical samples. Classes differentiated only by overall severity support the existence of a general, transdiagnostic mental distress factor and have important implications for intervention.


Anxiety Disorders , Anxiety , Child , Humans , Adolescent , Longitudinal Studies , Anxiety/diagnosis , Anxiety/epidemiology , Anxiety/psychology , Anxiety Disorders/diagnosis , Anxiety Disorders/epidemiology , Parents
19.
Arch Suicide Res ; 27(3): 905-921, 2023.
Article En | MEDLINE | ID: mdl-35698453

OBJECTIVE: Non-suicidal self-injury (NSSI) appears to be more common among women than men, though the underlying reasons for this remain unclear. In a community sample of young adults (N = 996, aged 18-33) assessed during the COVID-19 pandemic, we investigated alternative explanation for the NSSI prevalence gap: are women more likely to experience the feelings which lead to NSSI as a coping strategy, or does this prevalence gap result from differences in how men and women respond to distress? METHODS: Cross-sectional mediation and moderation analyses tested how self-reported psychological distress (K10), emotion dysregulation (DERS), and impulsivity (UPPS-P) may contribute to a higher prevalence of NSSI among women. RESULTS: Women were twice as likely as men to report past-year NSSI (14.47% versus 7.78%, OR = 2.00, 95% CI [1.29, 3.13]). Women reported significantly higher psychological distress and significantly lower sensation seeking and positive urgency than men. Psychological distress partially statistically mediated the relationship between gender and past-year NSSI. Gender did not significantly moderate associations between psychological distress, emotion dysregulation, or impulsivity and past-year NSSI. Past-year NSSI prevalence did not significantly decrease with age and we found no significant age by gender interaction. CONCLUSIONS: Greater levels of NSSI in young women are partly explained by their greater levels of psychological distress, but not by differences in how men and women respond to this distress. Given similar levels of psychological distress, emotion dysregulation, and impulsivity, women and men are similarly likely to experience NSSI. HighlightsWomen aged 18-33 were significantly more likely to report past-year NSSI than menWomen's greater psychological distress contributed to their higher NSSI prevalenceVariables investigated here were similarly associated with NSSI in men and women.


COVID-19 , Psychological Distress , Self-Injurious Behavior , Male , Young Adult , Humans , Female , Cross-Sectional Studies , Pandemics , COVID-19/epidemiology , Emotions , Self-Injurious Behavior/epidemiology , Self-Injurious Behavior/psychology , Impulsive Behavior
20.
bioRxiv ; 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38168226

We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (N=228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.

...